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1. Introduction  

The technique of photoluminescence (PL) is customarily used to investigate band structure and other 
single-particle states of a solid by monitoring electronic transitions induced by incident high-energy 
photons.1 However, PL excitation also leaves the solid in a high-energy state (here referred to as a 
solid-state plasma (SSP) characterized by various many-body correlated subsystems. Among these 
are 

• the electron and hole gases, consisting of free electrons (denoted by e) and free holes (denoted 
by h) 

• the exciton gas, consisting of bound electron-hole pairs (denoted by eh) 

• the biexciton gas, consisting of pseudo-hydrogen molecules (denoted by eehh) 

• the trion gases, consisting of bound carrier triplets (eeh denotes an e−trion, ehh an h−trion) 

• electron-hole droplets 

Because all of these species are present at once when a solid is under PL excitation, their mutual 
interactions and carrier kinetics are important in interpreting experimental data. 

In 3-dimensional (3-D) systems (i.e., bulk solids) SSPs are usually observed only at low 
temperatures, since the constituent carriers consist of weakly bound “molecules” made up of the PL-
excited free electrons and holes. However, these entities have much larger binding energies in 2-
dimensional (2-D) systems, notably in the transition-metal dichalcogenides (TMDs) such as 
molybdenum disulfide (MoS2) and tungsten diselenide. High-order correlated states (excitons, 
trions, biexcitons, triexcitons, etc.) have been observed experimentally in PL-excited carrier gases 
primarily in pseudo-2-D systems such as quantum wells2; however, the recent observation of trions 
in MoS2 by Mak et al.3 has generated renewed interest in these truly 2-D systems, and in particular 
has motivated the writing of this report.  

2. Formalism 

It is instructive to examine SSPs using lowest-order kinetic theory, which is formulated in terms of 
systems of spatially uniform rate equations.4 A system of this kind usually consists of N nonlinear 
differential equations, one for each of the N distinct carrier species, with N first-order time 
dependent densities: 

( ) ( ), , , ,   ,  1, 2,3, ,1 2 3f t G f f f f i Ni i i Nt
∂

= − ℜ =
∂

           (1) 
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where Gi are source terms originating from the incident PL photon flux and iℜ  denotes the 

recombination rate for the i – th species. In this context, “bimolecular” recombination implies that 
the iℜ  consist of sums of quadratic terms, each of which is the product of 2 carrier densities. 

Positive terms in iℜ  tend to increase the density of carrier i, negative terms to decrease it. Currently, 

the most interesting PL-induced systems are the 2-D monolayers, in which recombination dynamics 
can be complicated; for simplicity’s sake the modeling described in this technical report is based on 
simple (i.e., “pure”) bimolecular recombination laws, which can be rigorously justified for 3-D 
systems. 

Whereas a linear time-dependent system of first-order differential equations has only trivial steady-
state solutions (all carrier densities zero),5 nonlinear systems of this kind can have multiple nonzero  
steady-state solutions given by the equations  

( ), , , ,  = 0  ,                  1, 2,3, ,0,1 0,2 0,3 0,f f f f i Ni Nℜ =            (2) 

In this technical report, 6 types of carriers are considered as listed in Table 1. 

Table 1 Densities of carriers in a PL-excited solid-state plasma 

Carrier Species Density Symbols 
Electrons νe 

Holes νh 
e−Trions τe 
h−Trions τh 
Excitons n 
Photons ϕ 

 
 

3. Reactions 

The time dependence of each carrier species is governed by a set of reactions, which defines a path 
in the phase space of the system that leads to various steady states. Some of these reactions convert 
one member of a species to a different member of the same species, which can change the 
temperature of the carrier gas but not its density; this process can act as a kind of “catalysis” that 
changes other carrier densities while leaving the catalyst’s density unchanged.  

Let us examine each of the reactions in Sets A–E in detail:  

A. Reactions that change the electron density.  
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Note that Reaction 3 in Table 2 is catalytic as defined above, because it changes the electron and 
e−trion densities without changing the density of excitons. For information on Reaction 4 in this 
table see Crowne et al.6 and Blythe and Bloor.7 The rate equation for electrons is  

 1 2
2

ve G Av v P v Y n Jne e e eh ht
∂

= − − τ + τ +
∂

 (3) 

where G is the generation rate due to the incident photon flux from the PL laser, which is fixed.  

Table 2 Reactions that change νe 

Reaction Rate Constant 
1.     νe + νh  →  ϕ A 
2.     νe + τh  →  Ex P 
3.     Ex + τe   →    νe + Ex’  Ye 

4.     Ex + Ex’  →   νe + νh J 
 

B. Reactions that change the hole density.  

Note that Reaction 3 in Table 3 is also catalytic, changing the h−trion and hole densities without 
changing the density of excitons. The rate equation for holes is  

 1 2
2

vh G Av v N v Y n Jne eh h h ht

∂
= − − τ + τ +

∂
 (4) 

The factors of 1
2

appearing in rate Eqs. 3 and 4 serve to “balance” these equations in the chemical 

sense (i.e., each exciton produced requires 2 parent particles).  

Table 3 Reactions that change νh 

Reaction Rate Constant 
1.     νe + νh  →  ϕ A 
2.     νh + τe  →  Ex P 
3.     Ex + τh   →    νh + Ex’  Yh 

4.     Ex + Ex’  →   νe + νh J 
 

C. Reactions that change the e-trion density.  

The third reaction is listed in both Table 2 and Table 4 because it alters the densities of both  
e−trions and excitons, as the rate equation below shows:  

 1
2

e Lnv N v Y n Ke e e e e eh ht
∂τ

= − τ − τ − τ τ
∂

 (5) 
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Table 4 Reactions that change τe 

Reaction Rate Constant 
1.     Ex + νe   →    τe  L 
2.     νh + τe    →    Ex N 
3.     Ex + τe   →    νe + Ex’  Ye 
4.     τh + τe    →    Ex Ke 

 
D. Reactions that change the h−trion density.  

Again, the third reaction appears in both Table 3 and Table 5 because it alters the densities of both 
h−trions and excitons, as the rate equation below shows:  

 1
2

h Mnv P v Y n Ke eh h h h h ht

∂τ
= − τ − τ − τ τ

∂
 (6) 

Table 5 Reactions that change τh 

Reaction Rate Constant 
1.     Ex + νh   →    τh M 
2.     νe + τh    →    Ex P 
3.     Ex + τh  →    νh + Ex’  Yh  
4.     τe + τh    →    Ex Kh  

 
E. Reactions that change the exciton density.  

The second and third reactions are catalytic agents for the loss of excitons. This implies that the 
constants R and S will appear only in the exciton rate equation. The overall rate equation for excitons 
is 

 ( ) ( )
( ) 22

Qv v Rv Sv n Mv Lv ne e eh h hn
t N v P v K K Jne e e eh h h h

 
  
 
 
  

− + − +∂ =
∂ + τ + τ + + τ τ −

 (7) 

 
Reactions that change n are shown in Table 6. 
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Table 6 Reactions that change n 

Reaction Rate Constant 
1.     νe + νh    →  Ex Q 
2.     Ex + νe   →    νe’ R 
3.     Ex + νh   →    νh’ S 
4.     Ex + νh   →    τh M 
5.     Ex + νe   →    τe L 
6.     νe + τh     →    Ex N 
7.     νh + τe     →    Ex P 
8.     Ex +Ex’  → νe + νh  J 
9.     τe + τh    →    Ex + Ex’ Ke + Kh 

 

4. Charge Neutrality Ansatz 

An ansatz that is commonly used in the theory of photoconductivity to solve equations of this kind is 
local charge neutrality, i.e., particles are created and annihilated in pairs so that there is no 
accumulation of charge. However, this approach is rigorously correct only for a system with 2 
carrier species. An appealing way to generalize it to our case is to assume it applies both to electrons 
and trions separately, in which case v ve h v= ≡  and e h= ≡τ τ τ .  

Let us consider the full system of 5 equations under the strong-neutrality condition. As a further 
simplification, let us set the trion–trion constants Κe and Κh to zero. Then the rate-equation system 
becomes 

 

( )
( )

12            
2

1                         
2

12 2       
2

1                         
2

2
         

22

v G Av P v Y n Jet

Mnv P v Y nht
v G Av N v Y n Jnht

Lnv N v Y net

Qv R S M N vnn
t P N v Jn

∂
= − − τ + τ +

∂
∂τ

= − τ − τ
∂
∂

= − − τ + τ +
∂
∂τ

= − τ − τ
∂

 − + + +∂  =  ∂  + + τ − 

  (8) 

Because there are 5 equations, this assumption over determines the system. However, it is easily 
shown that for the special case where  ,  , N P L M Y Ye h= ≡ Π = ≡ Λ = ≡ ϒ , and R S= ≡ Σ , these 

equations take the form  
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( )

12 2(9 )         
2

1(9 )                           
2

12 2(9 )         
2

1(9 )                          
2

2(9 )  2 2 2

va G Av v n Jn
t

b nv v n
t

vc G Av v n Jn
t

d nv v n
t

ne Qv vn v J
t

∂
= − − Πτ + ϒ τ +

∂
∂τ

= Λ − Πτ − ϒ τ
∂

∂
= − − Πτ + ϒ τ +

∂
∂τ

= Λ − Πτ − ϒ τ
∂

∂
= − Σ + Λ + Πτ −

∂
2  n

 (9) 

Note that Eqs. 9a and 9c are now identical, as are Eqs. 9b and 9d, respectively. Then in this limit the 
system size is reduced from 5 to 3 equations and the number of rate constants drops from 10 to 5, so 
that for this special set of material constants the charge neutrality method yields a valid solution, at 
least formally. 

To find the steady-state densities, we set the time derivatives to zero, which reduces the system (Eq. 
9) to the following set of 3 algebraic equations: 

 

( )

( )

( ) ( )

1 2 210         
2
110                          
2

2 210   2 2 2

a v n G Av Jn

b v n nv

c nv v Qv Jn

Π τ − ϒ τ = − +

Π τ + ϒ τ = Λ

Σ + Λ + Πτ = −

 (10) 

By setting v xn=  and ynτ = , we obtain the following solutions to Eq. 10: 

 

12 1 2
2 2

2
2

xv G A x Jxf x
n xvf f

x vf fx

−Π − ϒ = + Λ − Π + ϒ 
=

Λ
τ =

Π + ϒ

 (11) 

where x is a real positive root of the cubic polynomial ( )( )24 2 2x Jx x Q xΛΠ = + Λ − Π + ϒ . 

To proceed, we need numbers for the 5 rate constants. To get these constants, we can use the 
Langevin method8 (see Appendix), which partitions the recombination into a “hunting” process 
where the reactants approach each other in real space, followed by an “on-site” event of short 
duration. Langevin argued that since the contribution of the latter process is small, most of the 
recombination time comes from the “hunting” phase. We will argue that that this scenario is 
appropriate for recombination kinetics in TMDs for the following reasons: 
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1) The large binding energy of excitons and other many-body complexes in TMDs suggests that 
they are compact in real space (i.e., Frenkel-like objects) with large effective masses and hence 
low mobilities, a characteristic that is enhanced by strong electron–phonon coupling, poor 
material quality, etc. 

2) The d–state nature of the conduction and valence bands of TMDs implies that for such 
complexes recombination takes place between atomic states. This implies that the matrix 
elements for atomic-level decay processes are large, and hence the “on-site” recombination 
time is small. 

Interaction between pairs of complexes is governed by the electrostatic forces between them. 
Although the interaction mechanism for recombination is strictly quadratic in this technical report, 
Table 7 lists the various force laws that mediate these interactions and enter into Langevin’s theory. 
We will treat excitons as neutral polarizable entities whose interactions with charge carriers and 
trions resemble those of nonpolar molecules. 

Table 7 Force laws that mediate Langevin recombination between carrier species: µe,h—electron/hole mobilities, 
µtr—trion mobilities, and µex—exciton mobilities. 

Recombining Pair Rate Constant Force Law Langevin Coefficient 

1. Ex, ν 
Nonpolar dipole + charge 

 
Λ, Σ 

 
5r−  

( ),
0

q
ex e hµ + µ

εε
 

2. ν, τ 
Charge + charge 

 
Π 

 
2r−  

( ),
0

q
tre hµ + µ

εε
 

3. Ex, τ 
Nonpolar dipole + charge 

 
ϒ  

 
5r−  

( )
0

q
ex trµ + µ

εε
 

4. τ, τ 
Charge + charge 

 
Κ 

 
2r−  

( )
0

q
tr trµ + µ

εε
 

5. Ex, Ex 
Nonpolar dipole + Nonpolar dipole 

 
J 

 
7r−  

 
London dispersive 

force 
 

5. Experimental Orders of Magnitude for Rate Constants 

In order to test the relevance of these calculations, we can estimate the densities of the various 
carrier species predicted by this theory within a 2-D, PL-excited MoS2 monolayer. In our steady-
state experiments,9 we used a 532-nm laser (photon energy 2.33 eV) to create an incident intensity of 
140 µW/µm2 at the sample surface, which corresponds to a photon flux of  
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~ ( )22 23.75 10  photons/ cm s× ⋅ . A quantum yield for electron-hole pair creation of 0.004 would 

create a generation flux G within the monolayer of ~ ( )20 21.5 10  eh pairs/ cm s× ⋅ . Assuming that the 

Langevin approach is appropriate, we can use our in-house samples of 2-D MoS2 with field-effect 

transistor mobilities µ = ( )210 cm / V-s to derive ( ) 5 3/ 1.8 10 cm / s0q −α = µ εε = ×  and  

344 2.3 10 cm / sA −= πα = × . If only the A-type recombination process operated, this value in 
tandem with G would predict an equivalent steady-state carrier density 

11
,

38.07 10  cme h
Gn
A

−= = × .  

6. Numerical Simulation 

By restoring the time derivatives to the truncated version of Eq. 9, we obtain a system of 3 ordinary 
differential equations that is amenable to solution by numerical simulation, notably by using the 
routine NDSolve in the Mathematica package. Let us assume that all of the rate constants are the 
same order of magnitude, as listed in Table 8. 

Table 8 Rate constants for Eq. 2 

Rate Constant Value 
 Π 44. 10−×  
Λ 64. 10−×  
ϒ  51. 10−×  
J 41. 10−×  
Q 51. 10−×  

 
Restoring the time derivatives results in the time-dependent system 

 

1 12 2(12 )              
2 2

1(12 )                                  
2

2 2(12 )    2 2                  

va G Av v n Jn
t

b nv v n
t
nc Qv vn v Jn
t

∂
= − − Πτ + ϒ τ +

∂
∂τ

= Λ − Πτ − ϒ τ
∂
∂

= − Λ + Πτ −
∂

 (12) 

with the same fixed-point solutions as Eq. 11: 
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12 1 2
2 2

2
2

xv G A x Jxf x
n xvf f

x vf fx

−Π − ϒ = + Λ − Π + ϒ 
=

Λ
τ =

Π + ϒ

 (13) 

where x is again a real positive root of cubic polynomial ( )( )24 2 2x Jx x Q xΛΠ = + Λ − Π + ϒ . In 

principle as many as 3 steady states are therefore possible. Using the experimental numbers 

( )2201.5 10  eh pairs/ cm sG = × ⋅ , 32.5 10−Λ = × , and 342.3 10 cm / sA −= ×  together with the rate 

constants listed in Table 8, we find that there is one real root for the cubic, which gives  

 

11

10

9

38.16 10  cm

38.49 10  cm

31.69 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

 (14) 

For these values of the various rate constants, in steady state the majority of the carriers are eh pairs, 
followed by excitons and then by trions. Running the time simulation by switching on the laser at t = 
0 with starting values ( ) ( ) ( )0 0 0 0v t n t t= = = = τ = =  gives the plot shown in Fig. 1: 

 

Fig. 1 Time dependence of carrier species for Λ = 4. × 10−6. Red—electron-hole 
pairs, magenta—excitons, and blue—trions. 

Note that the fastest rise time is for the eh pairs, followed by excitons and then by trions. 

0 2 4 6 8 10 12 14 ns
2
4
6
8

10
12
14
LogN
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It is also noteworthy that the constant Λ, which converts an exciton into a trion, is very small. 
Suppose we increase it to 42.5 10−× . The new simulation results shown in Fig. 2 exhibit several new 
features. First of all, the fixed point has moved: 

 

11

12

12

38.16 10  cm

33.99 10  cm

36.41 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

  (15) 

and now predicts that there are now more trions than excitons. In addition, the simulation now shows 
changes in the transient behavior: 

1) The eh density seems to saturate around 10 ns, but then develops a minimum in the range from 
10 ns to 140 ns before reaching a true steady state. 

2) Initially there are more excitons than trions, with a crossover around 20 ns. The exciton curve 
is nearly linear over a wide range from 10 ns to 50 ns. 

 

Fig. 2 Time dependence of carrier species for Λ = 4. × 10−4. Red—electron-hole 
pairs, magenta—excitons, and blue—trions. 

These features are more pronounced when 32.5 10−Λ = × , for which the new fixed point is at 

0 20 40 60 80 100120140 ns

10

11

12

13
LogN
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11

13

14

38.16 10  cm

31.15 10  cm

31.35 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

 (16) 

Next, Fig. 3 graphically exhibits the time dependence of carrier species for Λ = 4. × 10−3. 

 

 

Fig. 3 Time dependence of carrier species for Λ = 4. × 10−3. Red—electron-hole 
pairs, magenta—excitons, and blue—trions. 

Another parameter of interest is J, which controls the decay of excitons into eh pairs by exciton–
exciton collisions. This reaction is complementary to the parameter A, which mediates the creation 
of excitons from photons. For the simulation plotted in Fig. 1, J was set to 1.0 × 10−4; decreasing J 
to 1.0 × 10−6 results in a new fixed point and the transient behavior shown in Fig. 4: 

 

11

10

12

38.16 10  cm

34.89 10  cm

37.52 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

 (17) 

 

0 200 400 600 800ns
10
11
12
13
14
15
LogN
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Fig. 4 Time dependence of carrier species for J = 4. × 10−6. Red—electron-hole 
pairs, magenta—excitons, and blue—trions. 

Decreasing J results in a rapid rise time and saturation for the eh pairs, while excitons and trions 
increase more slowly, with the former saturating above the eh pairs and the latter below them. 
Increasing J to 1.0 × 10−3 results in the fixed point 

 

11

10

9

38.16 10  cm

38.49 10  cm

31.69 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

 (18) 

and the time history shown in Fig. 5. Now all of the carrier densities rise and saturate rapidly, with 
the trion population the smallest and eh pair population the largest. 

0 100 200 300 400 500 600ns
6
8

10
12
LogN



 

13 

 

Fig. 5 Time dependence of carrier species for J = 4. × 10−3. Red—electron-hole pairs, 
magenta—excitons, and blue—trions. 

The final parameter of interest is Q, which controls the creation of excitons by electron–hole 
collisions. It is noteworthy that all the simulation results presented up to now have predicted the 
same steady-state eh pair density, i.e., 8.16 ×1011 3cm− , regardless of how the other reaction 
constants are varied. To investigate this behavior, let us use the system (Eq. 8) to construct the 
quantity 2 2v n

t t t
∂ ∂τ ∂

+ +
∂ ∂ ∂

. This leads to a detailed-balance type of equation of the form 

 ( ) 22 2 2 2v n G A Q v
t t t

∂ ∂τ ∂
+ + = − −

∂ ∂ ∂
 (19) 

If we postulate that the system has a steady state, we can state that the combination of derivatives 

2 2 0v n
t t t

∂ ∂τ ∂
+ + =

∂ ∂ ∂
; then (19) implies the relation 2

2
Gv

A Q
=

−
. For the constants we have chosen, 

this gives 8.16 ×1011 3cm− , i.e., in exact agreement with the value of v predicted by the simulations. 
This result would be useful except that the argument is actually circular, in the sense that if we 
consider the case where Q > 2A, the system clearly does not have a steady state. In fact, as shown in 
Fig. 6, the response predicted by simulation is “explosive”, and the simulation program responds to 
this state of affairs by terminating at a time of approximately 60 ns, beyond which it cannot solve the 
problem. 
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Fig. 6 Explosive behavior of simulation with Q > 2A. System (Eq. 8) has no steady  
state, forcing the simulation program to terminate at a time of approximately 60 ns. 

7. Strong vs. Weak Neutrality 

On the surface, the assumption of equal densities should be a reasonable starting point for analysis of 
the carrier dynamics. However, since the correct problem involves 5 rate equations, there are 2 ways 
to implement charge neutrality: the ansatz of Section 4 above, which we will refer to as “strong 
charge neutrality”, and also a “weak charge neutrality” condition, for which e e h hv v+ = +τ τ . This 

approximation reduces the number of equations from 5 to 4. Which is the right choice? 

One way to test the validity of the strong-neutrality condition is to check for stability of the system 
when this condition is weakly violated. For this we use the full 5-equation system with the special 
set of coefficients but allowing all 5-carrier densities to be unequal, which reads 

 

1 2                       
2
1 2                       
2

1                                           
2
1         
2

ve G Av v v n Jne e eh ht
vh G Av v v n Jne eh h ht
e nv v ne e eht

h nv v neh h ht

∂
= − − Πτ + ϒ τ +

∂
∂

= − − Πτ + ϒ τ +
∂

∂τ
= Λ − Πτ − ϒ τ

∂
∂τ

= Λ − Πτ − ϒ τ
∂

( ) ( )
                                  

22 2     n Qv v v v n v v Jne e e eh h h ht
∂

= − Λ + + Π τ + τ −
∂

 (20) 
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The steady-state solution to this system satisfies the strong-neutrality condition; let us perturb the 
densities around this solution as follows: 

 

0

v v ve e
v v vh h
e e

h h
n n n

= + δ

= + δ

τ = τ + δτ

τ = τ + δτ

= + δ

 (21) 

This leads to the linear perturbation equation 

 

v ve e
v vh h
e et
h h
n n

δ δ   
   δ δ   

∂    =δτ δτ   ∂
δτ δτ   

      δ δ   

M
  (22) 

with 

 

( )

( )

( )

1 1 20 02 2
1 1 20 02 2

1 1 00 02 2
1 100 02 2

2 2 40 0 0

Av Av n v Jn

Av Av v n Jn

n v n v

n v n v

Qv n Qv n v v Jn v

    − + Πτ − ϒ − Π ϒτ +        
    − − + Πτ − Π ϒ ϒτ +    

   
    = Λ − Πτ − Π + ϒ Λ − ϒτ    

   
    − Πτ Λ − Π + ϒ Λ − ϒτ    

   
 − Λ + Πτ − Λ + Πτ Π Π − + Λ 

M











 (23) 

The stability criterion is that the eigenvalues of this equation all have negative real parts; this ensures 
that any departure from the fixed point will decay back to it. Using the first set of rate constants and 
the corresponding fixed point of the equations 

 

11

10

9

38.16 10  cm

38.49 10  cm

31.69 10  cm

v f

n f

f

−= ×

−= ×

−τ = ×

 (24) 

the eigenvalues λI are easily evaluated numerically:  
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8

8

8

8

6

3.81 10  1
1.79 102
1.68 103
1.13 104
1.15 105

λ = − ×

λ = − ×

λ = − ×

λ = − ×

λ = + ×

 (25) 

The sign of 5λ  reveals that in fact the solution to the system with strong neutrality is not a fixed 

point of the system, from which we may conclude that the true system has a steady state with weak 
neutrality (i.e., the SSP has more electrons than holes and more h−trions than e−trions to compensate 
it). 

8. Conclusions 

The analysis given here only scratches the surface of this problem, both mathematically and with 
regard to the physics of transport in 2-D systems. Use of Langevin’s formula should clearly be a 
point of contention; the work of Juška et al.10 on low-mobility layered systems for solar cells 
indicate that the dimensionality of the system enters strongly, converting the simple bimolecular law 
in 3-D to a 2-D expression involving fractional powers of the densities. In addition, Greenham and 
Bobbert11 have observed that the transport is partially diffusive; that is, the Langevin dependence 
takes into account only the drift of the particles in a Coulomb field. Finally, it is possible to take 
some temperature dependence into account by introducing the “Coulomb radius” 

2 / 4 0r q kTC = πεε  as a boundary between Langevin’s carrier approach and the “black hole” where 

the carriers recombine. We plan to discuss these matters in a future publication. 
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List of Symbols, Abbreviations, and Acronyms  

MoS2  molybdenum disulfide (a TMD) 

PL  photoluminescence 

SSP  solid-state plasma 

TMD  transition-metal dichalcogenide 

2-D  2-dimensional 

3-D  3-dimensional 
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